Hawthorne Beyer

Willow on Yellowstone’s northern range: evidence for a trophic cascade?

Beyer, H.L., Merrill, E.H., Varley, N. and Boyce, M.S. 2007. Willow on Yellowstone’s northern range: evidence for a trophic cascade? Ecological Applications 17(6), 1563-1571.


Reintroduction of wolves (Canis lupus) to Yellowstone National Park in 1995–1996 has been argued to promote a trophic cascade by altering elk (Cervus elaphus) density, habitat-selection patterns, and behavior that, in turn, could lead to changes within the plant communities used by elk. We sampled two species of willow (Salix boothii and S. geyeriana) on the northern winter range to determine whether (1) there was quantitative evidence of increased willow growth following wolf reintroduction, (2) browsing by elk affected willow growth, and (3) any increase in growth observed was greater than that expected by climatic and hydrological factors alone, thereby indicating a trophic cascade caused by wolves. Using stem sectioning techniques to quantify historical growth patterns we found an approximately twofold increase in stem growth-ring area following wolf reintroduction for both species of willow. This increase could not be explained by climate and hydrological factors alone; the presence of wolves on the landscape was a significant predictor of stem growth above and beyond these abiotic factors. Growth-ring area was positively correlated with the previous year’s ring area and negatively correlated with the percentage of twigs browsed from the stem during the winter preceding growth, indicating that elk browse impeded stem growth. Our results are consistent with the hypothesis of a behaviorally mediated trophic cascade on Yellowstone’s northern winter range following wolf reintroduction. We suggest that the community-altering effects of wolf restoration are an endorsement of ecological-process management in Yellowstone National Park.

Related content

Access the article on the publishers website

Australian Research Council DECRA Research Fellow

Email: hawthorne -at- spatialecology.com or h.beyer -at- uq.edu.au


ARC Centre of Excellence for Environmental Decisions &

Centre for Biodiversity and Conservation Science &

Environmental Decisions Group,

School of Biological Sciences, Goddard Building

University of Queensland

Brisbane, Queensland 4072 Australia