Hawthorne Beyer

Can natural disturbance-based forestry rescue a declining population of grizzly bears?

Nielsen, S.E., Stenhouse, G.B., Beyer, H.L., Huettmann, F. and Boyce, M.S. 2008. Can natural disturbance-based forestry rescue a declining population of grizzly bears? Biological Conservation 141(9), 2193-2207.

Abstract

Forest managers are increasingly considering historic patterns of natural forest disturbance as a model for forest harvesting and as a coarse-filter ecosystem management tool. We evaluated the long-term (100-year) persistence of a grizzly bear population in Alberta, Canada using forest simulations and habitat modelling. Even with harvesting the same volume of timber, natural disturbance-based forestry resulted in a larger human footprint than traditional two-pass forestry with road densities reaching 1.39 km/km2 or more than three times baseline conditions and suggested maximum levels of security for grizzly bears. Because bears favour young forests and edges where food resources are plentiful, a future shift to young forests and more edge habitat resulted in a 20% projected increase in habitat quality and a 10% projected increase in potential carrying capacity. Human-caused mortality risk, however, offset any projected gains in habitat and carrying capacity resulting in the loss of all secure, unprotected territories, regardless of forest harvest method, within the first 20–30 years of simulation. We suggest that natural disturbance-based forestry is an ill-suited management tool for sustaining declining populations of grizzly bears. A management model that explicitly considers road access is more likely to improve grizzly bear population persistence than changing the size of clear-cuts. In fact, large clear cuts might be counter productive for bears since a diversity of habitats within each bear’s home range is more likely to buffer against future uncertainties.

Related content

Access the article on the publishers website

Australian Research Council DECRA Research Fellow

Email: hawthorne -at- spatialecology.com or h.beyer -at- uq.edu.au

Affiliations:

ARC Centre of Excellence for Environmental Decisions &

Centre for Biodiversity and Conservation Science &

Environmental Decisions Group,

School of Biological Sciences, Goddard Building

University of Queensland

Brisbane, Queensland 4072 Australia